
SPLIT: A Compositional LTL Verifier

Ariel Cohen1, Kedar S. Namjoshi2, and Yaniv Sa’ar3

1 New York University, New York, NY. Email: arielc@cs.nyu.edu
2 Bell Labs, Alcatel-Lucent, Murray Hill, NJ. Email: kedar@research.bell-labs.com
3 Weizmann Institute of Science, Rehovot, Israel. Email: yaniv.saar@weizmann.ac.il

Abstract. This paper describes SPLIT, a compositional verifier for safety and
general LTL properties of shared-variable, multi-threaded programs. The founda-
tion is a computation of compact local invariants, one for each process,which are
used for constructing a proof for the property. An automatic refinement procedure
gradually exposes more local information, until a decisive result (proof/disproof)
is obtained.

1 Introduction

Standard model checking algorithms prove safety properties through a reachability
computation, computing an inductive assertion (the reachable states) that is defined
over the full state vector. They often suffer from the state explosion problem [2]; for
concurrent programs, this is manifested as an exponential growth of the state space
with increasing number of components.

SPLIT is a new tool for the verification of shared-variable, asynchronous concurrent
programs, which ameliorates state explosion through assertional (i.e., state-based) com-
positional reasoning, based on the classical Owicki-Griesmethod [13]. The founda-
tion is a construction of avector of local (i.e., per-process) inductive invariants,θ =
(θ1, θ2, . . . , θN ). The invariants are mutually interference-free—i.e., a move by one
process does not violate the local invariant of another. Such a vector is called asplit-
invariant, as the conjunction of its components,(

∧
i θi), is always aglobally inductive

invariant. Locality is enforced by syntactically limitingeach process assertion to the
variables visible to that process—i.e., the globally sharedand process-local variables.

SPLIT implements a number of algorithms; together, they result ina fully automatic
compositional model checker for general LTL properties.

1. A simultaneous least fixpoint algorithm [12], which computes thestrongest split
invariant vector (A split invariant is usually weaker than the set of reachable states.)

2. A safety refinement method [4], which achieves completeness by gradually “expos-
ing” local predicates (i.e., encoding them as shared variables)

3. A compositional algorithm which verifies arbitrary LTL properties [5], based on a
split invariance computation and a counter-example based refinement scheme

4. A recently developed compositional algorithm [6], for the verification of progress
properties under general fairness assumptions



Checker

Configuration

SMV Editor

Specification

Editor

Split Invariant Generator

Incorrect

“Valid”

Counter ExampleRefine

LTL

Fig. 1.The architecture of SPLIT.

Experimental results support the hypothesis that local reasoning allows verifying signif-
icantly larger systems without running into state explosion, and can result in order-of-
magnitude improvements in run-time over monolithic model checking. It is interesting
that basic local reasoning suffices for the proofs for many protocols, without a need
for refinement. In many other cases, a proof/disproof is obtained by exposing a lim-
ited amount of local state, validating the basic argument for compositional verification.
SPLIT has been used to verify protocols for cache coherence and mutual exclusion. To
the best of our knowledge, this is the first tool to implement afully automated compo-
sitional method for both safety and liveness properties.

2 Architecture and Selected Features

SPLIT is built using JTLV [14] – a BDD-based framework for developing temporal ver-
ification algorithms. Fig.1 sketches the architecture of SPLIT. It takes three inputs: an
SMV [11] program, an LTL specification, and a configuration. The main part of SPLIT

is built up from three components: a unit that generates the split invariant, a verifier for
LTL properties, and a unit to compute refinements.

Verification is implemented differently for safety and liveness properties. For a safety
property, the algorithm (from [12,4]) first checks if the split invariant implies the prop-
erty. If it does, then the property is valid; otherwise, the refinement unit heuristically
selects local predicates and “exposes” them. (A local predicatep is exposed by adding
an auxiliary shared variable, sayxp, in such a manner that the invariant(xp ≡ p)
is maintained.) Exposing local state strengthens the splitinvariant in the next iteration;
the process is repeated until the property is proved or no additional refinements can be
performed. In the latter case, SPLIT generates a valid counter-example trace.

For a liveness property, the algorithm (from [5,6]) uses the computed split invariant to
construct abstract forms of each process. It checks if the liveness property is satisfied by
all abstract processes, using a standard LTL checker from JTLV . If all checks succeed,
the property is valid; otherwise, a counter example trace isextracted. If the trace is
spurious, it is used by a refinement procedure to expose localpredicates. This process
is repeated until either the property is proved or a valid counter-example trace is found.



Example Property N JTLV SPLIT

Nodes Time Nodes Time

SEMAPHORE (+COUNT) mutual exclusion 10 1.2M 10.4 160k 0.3
– valid – 12 1.8M 440 252k 0.5

PETERSON’s mutual exclusion 5 6.9M 16 3.7M 8.1
– valid – 6 91M 509 43.8M 172

BAKERY mutual exclusion 7 2.9M 65 7.8M 20
– valid – 8 11M 844 27M 97

SZYMANSKI mutual exclusion 3 68k 0.1 788k 2.4
– valid – 4 395k 0.6 3.8M 10

SEMAPHORE individual starvation-freedom10 21M 24 371k 1.1
– Counter example – 20 over 20 minutes 2.1M 9

BAKERY individual starvation-freedom3 300k 0.3 1.2M 2.5
– Valid – 4 11.6M 93 14.6M 52

DINING-PHIL individual starvation-freedom9 9.1M 63 4.1M 8.6
– Valid – 10 25M 421 8.6M 18

Table 1.Characteristic experimental results. (More results are onthe tool web page.)

The user interface for SPLIT allows the user to expose local variables, which can help
reduce the number of refinement steps. The counter-examplesproduced are augmented
with refinement predicates that express the changes to the state. SPLIT is implemented
in about 9000 lines of Java, of which at least half is for the user interface. It relies on
standard BDD libraries written in C and Java. More information, including a collection
of examples, can be found atwww.wisdom.weizmann.ac.il/ ˜ saar/split .

3 Experimental Results

We have used SPLIT to verify safety and liveness properties for a number of multi-
threaded protocols for mutual exclusion and cache coherence. Table1 presents charac-
teristic results of comparing SPLIT with the (monolithic) LTL model checker in JTLV .
Both were configured to use the CUDD BDD library. In the table, “N ” is the number
of processes, “Nodes” is the peak number of BDD nodes generated, and “Time” is the
runtime in seconds.

In nearly all cases (SZYMANSKI being the exception) SPLIT obtained better run-times,
sometimes showing as much as one or two orders of magnitude improvement. Improve-
ment in memory consumption, which is proportional to the number of peak BDD nodes,
is not as clear-cut: for BAKERY, for which it obtains better run-times, SPLIT requires
more memory. SPLIT was also able to verify much larger systems than the monolithic
model checker; for instance, it proves SEMAPHORE for N = 64 where JTLV ran out of
memory already forN = 24. The performance of NUSMV [1] on most of these ex-
amples was inferior to that of JTLV and SPLIT even after disabling the conjunctive par-
titioning. This appears to be because NUSMV is optimized for verifying synchronous
systems and we therefore do not include the results obtainedby it.

www.wisdom.weizmann.ac.il/~saar/split


4 Related Work and Conclusions

SPLIT mechanizes assertional (i.e., state-predicate based) compositional reasoning in
the style of the seminal Owicki-Gries proof method. Thread-modular reasoning [8]
computes the strongest split invariant with an explicit-state algorithm, but it does not
include a refinement step and is therefore incomplete. An alternative automated compo-
sitional method is based on behavioral (i.e., path-based) reasoning, and uses automaton
learning algorithms [10,9]. Experimental results with this method have been mixed [3]:
in many cases, monolithic verification is faster; likely dueto the complexity of the au-
tomaton learning algorithms. Assertional reasoning has a simple implementation, even
for the analysis of general LTL properties, and the experiments with SPLIT show a clear
advantage over monolithic verification on a number of protocols.

There are several potential improvements and extensions being investigated in current
work. One focus is on coupling counter-example generation with refinement; the current
implementation uses whichever trace is provided by the JTLV model checker. Another
focus is on parallel and distributed implementations [7], as the compositional reasoning
calculations can be easily parallelized.

References

1. Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri. NUSMV: a
new symbolic model verifier. InCAV, pages 495–499, 1999.

2. E. M. Clarke and O. Grumberg. Avoiding the state explosion problem in temporal logic
model checking. InPODC, pages 294–303, 1987.

3. J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke. Breaking up is hardto do: an investigation
of decomposition for assume-guarantee reasoning. InISSTA, pages 97–108, 2006.

4. A. Cohen and K. S. Namjoshi. Local proofs for global safety properties. InCAV, volume
4590 ofLNCS, pages 55–67. Springer, 2007.

5. A. Cohen and K. S. Namjoshi. Local proofs for linear-time properties of concurrent pro-
grams. InCAV, volume 5123 ofLNCS, pages 149–161. Springer, 2008.

6. A. Cohen, K. S. Namjoshi, and Y. Sa’ar. A dash of fairness for compositional reasoning.
submitted to CAV 2010.

7. Ariel Cohen, Kedar S. Namjoshi, Yaniv Sa’ar, and Lenore D. Zuck. Symbolic model check-
ing on multi-core processors. Technical report, Bell Laboratories, 2009.

8. C. Flanagan and S. Qadeer. Thread-modular model checking. InSPIN, volume 2648 of
LNCS, pages 213–224, 2003.

9. D. Giannakopoulou and C. S. Pasareanu. Learning-based assume-guarantee verification (tool
paper). InSPIN, volume 3639 ofLNCS, pages 282–287, 2005.

10. D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. Assumption generation for software
component verification. InASE, pages 3–12, 2002.

11. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
12. K. S. Namjoshi. Symmetry and completeness in the analysis of parameterized systems. In

VMCAI, volume 4349 ofLNCS, 2007.
13. S. S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic approach.

Commun. ACM, 19(5):279–285, 1976.
14. Amir Pnueli, Yaniv Sa’ar, and Lenore D. Zuck. JTLV : A framework for developing verifica-

tion algorithms. web:http://jtlv.sourceforge.net/ .


